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Abstract 

We solve two hydrodynamical problems. The first involves a shock 

wave, a contact discontinuity, and a rarefaction wave using an uncondi- 

tionally stable finite difference scheme. The Courant condition is sat- 

isfied everywhere except in one zone behind the shock, where it is vio- 

lated by factors of 10 and 100. The nonlinear difference equations are 

solved by Newton's method. The total number of Newton iterations to get 

to a certain time is apparently independent of the degree to which the 

normal stability condition is violated in the one zone. 

The second problem involves two rarefaction waves moving in oppo- 

site directions. One wave moves in a region where the Courant condition 

is violated by a factor of approximately two. The other wave moves in 

a region where the Courant condition is satisfied. Numerical results 

are compared with the analytical solution. 

An examination of several runs indicates one explicit time step is 

about five times as fast as one implicit time step. Therefore, use of 

the implicit method is indicated when the Courant condition is violated 

by a factor of 5 or more. 
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Chapter I 

Introduction 

Consider a hydrodynamical problem in vhich a shock wave or dis- 

turbance of some kind is advancing into a material» Suppose that in 

the neighborhood of the disturbance the sound speed is C0 and suppose 

also that there is a relatively quiescent region behind the disturbance 

in which the sound speed is C,. Any explicit finite difference method 

vill require 

max C ^< 1 
Ax 

so that if C, » C- one will be forced to follow the uninteresting de- 

tails of the motion in the quiescent region. An unconditionally stable 

finite difference method would be useful in such a problem. We present 

such a method for the equations of nonviscous compressible flow in one- 

dimensional Lagrangian coordinates. 

The Differential Equations 

The Lagrangian hydrodynamic equations with time t and mass m as 

independent variables are: 
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Su.  ~ x: = °   (mass equation) 

ou b 
5t ' 

+ 5m = °      (momentum equation) 

5t + p 5m = °    (energy equation) 

The dependent variables are: 

p = density 

u = velocity 

p = pressure 

I = internal energy 

The velocity is defined by 

u-dx 
u = 5t 

vhere x is the coordinate of an element of fluid in the laboratory 

frame. Differentiating this velocity equation vith respect to mass 

ve see from the mass equation that 

1 = dx 
p  5m 

The Difference Equations 

To form difference equations from the differential equations ve 

imagine the fluid partitioned into cells of mass m vhere j = 1,2, ...,J, 

J being the total number of cells. Subscripts on field variables denote 
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the value of that particular variable at that space pointo For example, 

u. ,/p denotes the right-hand cell boundary velocity of the $      cell« 
„,1 

Superscripts denote time steps* For example, 17  denotes the in- 
J 

ternal energy of the j  cell at time t = (n+l)At. 

We make the following difference approximations: 

du  u dp 
5t ~ " 5m 

n+1 n naf n+1       n+l\      o/,  Q\/ n       n   \ 

At m.+m. , m.+m.T 

dx 
5t =u 

(2) n+l 
Xj+V2 " Xj+l/2     a n+1 /T  0 v n 
^  At    J    '     " 0Uj+l/2 + ^^2 

1 _ dx 
p ~ 5m 

(3) 
n+1                   J 

Xj+l/2      Xj-l/2 

dl             du 
5t = "P55 

CO 
jn+1 _ jn     e n+1 

J      "    i       PJ        /n+1           n+1   \ (l-ö)p^ 
At          -    m.        (uj-l/2     U,j+1/2J  ■'■ m. (Vl/2 " Uj+l/2) 
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This form of the difference equations -was chosen "because it gives 

a fairly simple form to the Jacobian matrix. We expect that the Newton 

iterative method vould vork just as veil for other forms of the equa- 

tions. 

The polytropic gas equation of state is used. Also a pseudo- 

viscosity term is added to the pressure to spread the shock front. The 

pressure term then takes the form [l]: 

(5)  pf1 - (y-DpfVT1 + VAT1 (vFt,n - u?£J 

if 

'i      - w ^i    ^      - ~'*JPJ       lUj-l/2 - uj+l/2j 

f n+1 n+1   \ .   n 

lVl/2 " Uj+1/2J > ° 

if 

p*+1 = (7-ihT^+1 

/n+1 n+1   \   . _ 
(Uj-V2 " V1/2) < ° 

Here 7 is a constant characteristic of the gas and X  is a constant 

whose choice will be discussed later. 

Rewriting Equations (1) and (4) we have: 

«> u- . u° . »tir->$*. **>ti - ■&>. 0 j+l/2       j+l/2 m   + m   . m   + m. - u 

J        J+l j        j+1 
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(7)    I* 
Q n+1/ n+1 n+1   \A.       /, Q\ n/ n n       \A. 

na    tf    %   (".1-1/2 - Vyg)At    '^^h-i/a-Vi/a)^    0 
J     ° mj mj 

for j = 1,2,..., J. 

Assuming that we know the values of the dependent variables at time 

n, this gives us a system of 2J simultaneous nonlinear equations in 2J 

unknowns for the values at time n+1« 

Newton's method can be used to solve this system of equations. For 

a general system of the form 

f(y) = o 

where f and y are vectors Newton's method is an iterative procedure in 

which the p+l-st iterative y^ ' is defined by 

r<^> - >> + 47 

where Ay is the solution of the linear system 

(8) JAy=-f[y(p)] 

where 

evaluated at y^ . 

Taking (5) into account we see that (6) and (7) may be written in 

the form 
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»> «J (Ä Ä <£W T> =Q ■ ° 

<*> 5* (Ä Ä S") ■ ° 

In our case ve see then that the Jacobian matrix has a particularly 

simple form, namely that it is block tridiagonal. 

A B, 

J = 

B 2 

*3 
B„ 

M-l 

AJ   BJ 

where the submatrices are 2x2. 

(01) Aj. 
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du: 
s!i 

(12) Bj = 
+1/2 

V5iu J+l/2 

(13) C   - 

öi, 
BT 

j+ly 

where all differentiations are with respect to the variables u or I at 

time n+le 

We use the usual scheme to invert a block tridiagonal matrix [2]. 

Define 2x2 matrices as follows: 

wl = Bl\>     wj - (Bj " Yj-l) "S> 2 < «3 < J-1 

G, = B^f, j  G, = IB.  -  A.W. ^""V. - A.G. ,\,   2 < j < J 

If we redefine Ay and f so that 

f. = 
J - (gj,go),  ^ - eVl/2^) 

then 
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^J = GJ 

^ = VVVi' ^^J-I 

The p+l-st iterate is obtained by setting 

„(P+1) _ „(P)      ,  /,, 
Vl/2 ~ uj+l/2 + ^j+1/2 

J J d 
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Chapter II 

Derivation of Matrix Elements and Stability Analysis 

We now derive the entries of the 2x2 submatrices of the Jacobian 

matrix. Referring to (6), (7), (ll), (12), and (13) ve have: 

A. = 

/ -20At 
'm. + m. , [da 

^.i+l 

-0At        ö 

Vmj    ^-1/2 

0-1/2      ouj-l/2 

n+1/ n+1 n+1   \ 
Pü     (U0-l/2-Vl/2J 

1 - 20At ÖP1 n+1 
ÖP] 

B. 

m. + m. .  \Sä 
5        0+1 

n+1 

It* 
j+V2 " ^+1/2/ 

29At 
mj + mj+l 

n+1 / n+1 / n+1 n+1   \" 
1/2 " uj+l/2j 1 - eat  a 

mo"   ^ 
Ln+1 A,n+1 n+1   V 
h 1W2 - V1/2) 

-17- 



-20At      (   a4+1        J^j+1 
,du..„/„      du 

V 
m- + mj+i W3/2    ^3/2/ mj + Vx VdIj+x   ^j+l 

-29At  I^L.^ 

0 0 

Here again all differentiations with respect to u and I are to be taken 

at time n+1. 

To complete the derivation we need the various partial derivatives 

of the pressure terms. 

From (2) it follows that 

n+1 n+1 f-\k\ V
n+JL ■u-n+J- „n „n ,  0.4./ n+1 n+1    \ (U) Xj+V2      XJ-V2      Vx/2 " xj-l/2 + M(V/2 ■ UJ-V2 

(">*(-W/2 " «£0/2) 

The pressure term may then be written 

i+l 
7P 

n «x. _<r±hSL_ x pj „n+1 „n+1     +      /„h+1 _n+l 
L 

X.   , /_   -  X. 
0+V2 "    0-1/2 X.., /«   -   X j+1/2 " xj-l/2 

/ n+1 n+1   \ 
h-1/2 " V1/2) 

if 

W* " Uj+V2 > ° 
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and 

if 

(r-i)m.f?+1 
n+1 = 3 j 

■*j n+1 n+1 
Xj+l/2 " Xj-l/2 

n+1 n+1     ^ _ 
Uj-l/2 " Uj+l/2 < ° 

A tabulation of the pressure derivatives follows: 

^ n+1 
*1 

(7-i;möAtI                      /        ymp 

^j+1/2 (Xö+l/2-Xj-l/2)2      VX^l/2"XJ-l/2 

-X6At /— ^J                ( Vl/2 " Ui+l/2) 
Cj+l/2 " Xo-l/2 (Xj+l/2 " Xj-l/2) 

where the last two terms do not appear if u, .;„ - u. i/o —  0# 

öpj+l     dpj+l 
ÖUJ+l/2    ^0+3/2 

op"+1    (7-l)m.       ^ 

^T  (Xö+l/2 - Xj-l/2)'    «3 ~ 
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5T 
J+l/2 

' n+1 apn+1 

J     (Vl/2 " UJ+1/2)J   - (Uj-l/2 - Vl/2) 5ü£^ " Pj 

ST: 
0 

n+1/ n+1 n+1   \" 
PJ    (V1/2-V1/2I (Uj-l/2 " Uj+l/2) "St 

n+1 

öp*+1     öpn+1    öpn . 

*VV2   ^^1/2   ^0-1/2 

5u" 
Ü-1/2 

n+1. ÖP 
n+1 

PJ    (Vl/2 * Uj+1/2)J    " Pj + (uj-l/2 " ^+1/2) 3ü£^ 

N n+1 ^ n+1 ^_n+l 

^J+3/2 = ^    dUj+3/2 = " ^+1/2 

öp n+1 
dp.,n (y-1 )m 

Sä 
3+1 

0;      /J+1 w~*' .1+1 
SIj+l " Xj+3/2 " Xj+l/2 

Thus if ve -write 

K = 0At 

^n = K 
m. + m. n 

lj = Uj-l/2 * uj+l/2 
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we have: 

ti 
n+1 

'2£m 3u" 
J+l/2 

A. 
0 

öpn+1 

w L. Lax. _-J— + p, 
X^l/2 

ox 

0, 

n+1 n+1 

B. = 

VSVV^      ^+3/2/   Xj+l/2 " Xo-l/2 

-2Zta(7-l)m. 
-LL 

K    / ^+1 

j du«.-i/o " P0, 
1 - 

K&u(y-l) 

cj+l/2 " xj-l/2 

C-^ 
c. = 

du J+3/2 

0 

2^m(y-l)mj+3L \ 

XÖ+3/2 " Xj+l/2 

0 

The method described in Chapter I is used to invert this matriXo 

Stability Analysis 

As has been pointed out [3] a rigorous stability analysis for the 

hydrodynamical difference equations has not been carried out. This 

analysis proceeds in the same manner as that done by Fromm [l]o 
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We assume that the field variables vary slightly from their true 

valueso 

Let: 

Vl/2 = U0(1+ Vl/2)' 5<<1 

Po = po(1 + €J'     e<<1 

h'M1***)' 5<<1 

For simplicity assume that the cell masses are equal; m. = m = pn5xno 

We substitute these values in the difference equations and get the 

equations of first variation, dropping all higher order terms. 

m.   pA8xr 
x.", n      n      j   K0 0      /, n\ 
Wa - ^-1/2 - -i - ^ ■ -0(^0) 

Then (1*0 becomes 

(15) ej €j " -5x7   ^j-1/2 * ^+1/2J +        5x0 («J-V2 " ^+1/2J 

C 5t 
We define the Courant number u = ■=  where CL is the local sound 

5x0       0 

speed« 

Then (15) becomes 

.ml  n  9^0 /.ml   .ml \  ^K 
(1£) eo ■ ed " — l^-i/a ^1/2) + —07- (6d-V2 ■ ^1/2) 
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The first variation of the energy equation (7) is 

. n+1 _ n\ _ 95t ja.+l „ /en+l  _ en+l \ 

<"> jo («r- -6!) - T P,      un i' J      M5j-l/2- 6j+l/2j 

,   (1-0)öt     n      /.n ,n       \ 
+ -^-T~ pj uo (^-1/2 " ^+1/2) 

For p. we substitute 

(7-l)p0I0(l - 6n + en) + Xp0u0C0(£V2 • l^+l/2) 

Upon simplification (17) becomes 

(y-l)p0u05t r riWfn *n      \" 
(18) 5*+1 - 6? = v J J 

Finally we get the first variation of the momentum equation by sub- 

stitution into (6) and again dropping higher order terms. 

<w> SS/2 - «W ■ =: {^Vo [(- 
n+1     _n+l\   ,   /cn+l     cn+l\ 

J+lj +   \b3      ' VÜ ,€J      "e 

+ ^oVo 
/»n+1 n+1   \       /»n+l tn+1   \ 
V^-l/2 " lj+l/2j "   ^+1/2 " 6J+3/2J 

^ I(7-1)P0I0 m ft - -^+ (8° ■ ■$*)" 

+ ^ocouo (^-1/2 - ^+1/2) - ifi+i/2 " e5+3/a) 
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At this point ve do the usual thing» We assume that the coeffi- 

cients are constant and that the solution of these three equations of 

first variation can be vritten in a Fourier series. If so, then each 

term of the series is a solution and ve look at a typical term to see 

vhat conditions must be satisfied to make it a solution. 

We assume that 

I 
n 
,5+1/2 = |e 

ik(j+l/2) n 

n     B ikj n 
€J=€e     r2 

5* = Be^rP 

and consider only the special case r, = rp = r_ = r. 

Substitution of these values into (l6), (18), and (19) yields after 

simplification 

"(r9+l-0) 2i sin k/2 \sn. 
(l-r)e - 

'0 
i = 0 

2iC u sin k/2 (rÖ+1-e)" 

V 
G + [l - kk\i sin2 k/2 (x6+l-6)-r]g 

2iCQu sin k/2 (r9+l-9)" 

V 
8 = 0 

2i(7-l)uQu sin k/2 (r9+l-0)" 

'0 
I + (l-r)8 = 0 
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For this system of homogeneous linear equations to have a non- 

trivial solution it is necessary that its coefficient matrix be singular. 

1 - r 
2i(iu0 sin k/2 (re+1-0) 

2iC-n sin k/2 (re+1-0) o    ,    , u       1 - k\\x sin" k/2 (r0+l-6)-r 
2iC n sin k/2 (rS+l-e) 

V 
2i(y-l)u0n sin k/2 (re+1-0) 

V 

1 - r 

Expanding this determinant we get: 

(l-r)[l-r-to.n sin2 k/2 (r9+l-0)] + K\£  sin2 k/2 (r0+l-0)2 = 0 

For full generality at this point ye vould have to study the roots 

of this quadratic equation for arbitrary 0. This is somewhat difficulto 

The two cases of most importance are 0 = 1/2 and 0=1. Let sin k/2 = T . 

For 9 = 1/2 the equation reduces to 

r2(l + 2X.UT2 + H2T2) + r(2u2T2 - 2) + (l - 2XUT2 + U
2
T
2
) = 0 

- 1 - U2T2 - 2UT ^
2
T
2
 - 1 

= 2   2 2 
1 + 2A.UT* + u T 
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p p 
Case (1): If X T  < 1, then r is complex 

|r|2      (l - »V)a +>uV(l - XV) 
(l + 2\HT

2
 + n2T2)2 

- 1 - 2*-HT2 + H2T2 ^ 
~        p   2 2 

Case (2): If X T > 1, then r is real. 

To have r < 1 ve need 

2 2 2 2 2 /op /  p o 
2A-HT   + n T   > - ,a T

C
 + 2|iT N/\ T    - 1   or    \T + UT > +   N/\ T* - 1 

V^2-2 
But X.T > \/X. T - 1, so indeed r < 1. The proof for the case 0 = 1 is 

similar. 

Notice here that r < 1, independent of \x,  the Courant number. This 

shows that we have verified a necessary condition for this method to be 

unconditionally stable, namely, for solutions of the equations of first 

variation having the form we have prescribed. 
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Chapter III 

Discussion of Numerical Results 

The first problem used to test the scheme is the one used in [2]. 

Here we have two constant states separated by a discontinuity. The con- 

figuration at hO  cycles is a shock moving with speed 1.24, a contact 

discontinuity at the point of initial discontinuity, and a rarefaction 

wave. 

The initial conditions for this problem are: 

7  = 1.4 

At = 0.337 (the Courant value) 

J = 50 (25 cells to the left of the interface and 25 cells to the 

right). 

Material on left Material on right 

mi 
= 1 

p3 = 0.5 

vi 
= 3.528 

u. 
,1 
= 0.698 

l3 = 19.756 

m. 
3 
= 1 

pj 
= O.UU54 

PJ 
= 0.5714 

Uj 
= 0 

I. « 2.857 
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Tables 1, 2, and 3 give the velocities, densities, and internal 

energies for several different calculations. 

The Lax-Wendroff figures refer to the values obtained using the 

scheme of Reference k. 

Exact refers to the analytical values© 

Explicit refers to values obtained using one of the explicit schemes 

of Reference 1« 

Inrp1 refers to calculations done with all 50 cells having mass one. 

To test numerically the unconditional stability of the implicit dif- 

ference scheme a thin cell having the same density, but only a tenth the 

mass and vidth of the other cells, vas put into cell 20. This means 

that the Courant condition was violated there by a factor of approxi- 

mately ten. Impp refers to calculations done with this thin cell. 

Imp- is similar to Imp2, the only difference being that this time 

cell 20 was given mass and width one-hundredth that of the other cells. 

Thus the Courant condition was violated by a factor of approximately 

one hundred. As can be seen from the results for Impp and Imp.,, no 

instability appeared in the calculation. When the explicit method was 

run with a thin cell, large fluctuations appeared and eventually two 

cell boundaries crossed near the thin cell. 

Since Newton's method involves evaluating the elements of a large 

matrix and then inverting it, another method for solving the system of 

simultaneous nonlinear equations was considered, namely, the method of 

nonlinear overrelaxation as described in [5]. If one has a system of 

k algebraic equations 
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:^i^xl, yi2?   '"'  *Ts) ~  ^'  i = 1, 2, ...,k 

each having one continuous derivative, then the generalization of ordi- 

nary overrelaxation suggested by Lieberstein for the nonlinear system 

is 

,   ,    ,    s f Wn) X(n)     X(n)l 

1llLXl   ,x2   '"'fXk   J 

f2 
Una)    (n)            (njl 

f22 
Jwi)    in)           (njr 

X£     =Xi 

(n+1)   (n) m 
X2     X2  " 

etc., where f.. = äf./öx.. Here superscripts on variables denote the 

n  iterate and n+l-st iterate and to is the relaxation parameter. 

It was hoped that this method would be faster than Newton's method 

for solving the system of nonlinear equations. As Lieberstein points 

out, the rate of convergence of this method depends rather critically on 

the choice of to. For our choice of tu = 1 the overrelaxation method was 

actually slower than Newton's method, but a more careful study of how to 

choose co in an optional manner would probably make the overrelaxation 

method faster than Newton's method. 

Figure 1 gives the velocity profile for Imp, superimposed on the 

exact solution. Figure 2 gives the density profile for Imp, superim- 

posed on the exact solution. 
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Figure 3 gives the velocity profile near the shock front for 

0 = 1/2 and three different values of X,» In general a large value of 

X gives a smoother profile near the shock front but spreads the shock 

over several cells. A smaller X gives a sharper shock front but has 

more oscillation. Some intermediate value of X gives the best compro- 

mise between these two effects« We have found that for 0 = 1/2 a smaller 

X, can be used than for the explicit case» This is clear from Figure 3. 

To test the explicit case we needed to take X- = 0.7 and even then some 

oscillations appeared near the shock front, but for the implicit case 

X = 0.5 gave a fairly sharp shock front with practically no oscillation. 

Several trials were run with 0=1. The most notable differences 

in the results are that (l) they are somewhat less accurate than for 

0= 1/2 and (2) it was found that the pseudo-viscosity term was un- 

necessary and X = 0 gave the sharpest shock front with little oscil- 

lation. 

The reduced accuracy may be understood when one considers that for 

0 = 1/2 all the differences are centered and the truncation errors are 

of order (At)0. For any other choice of 0 some second-order truncation 

error is present. One should then expect more accurate results for 

0 = 1/2 than for any other choice of 0. 

The result that X = 0 is the best choice means that the implicit 

scheme itself contributes an effective viscosity term when 0=1. 

Table k  gives the velocity profile for 0=1, X = 0 and X = 0.5. 
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The total number of Newton iterations required to get to t = 13.^8 

is approximately 120 for Imp-, Impp, and 3mp_ and for 9  = 0.5 and 9  = 1, 

This number is thus apparently independent of the degree to which the 

Courant condition is violated in zone 20. 

The convergence criterion used required that the maximum percentage 

change in any value of u or I be less than 1$ on one Newton iteration. 

This generally required three Newton iterations for each time cycle. 

When this criterion was relaxed to the point of requiring the maximum 

percentage change to be less than 10$ the final results were changed at 

most by a unit or two in the fourth significant digit. For this cri- 

terion only two Newton iterations were required for each time cycle. 

When the stricter convergence criterion is used timing experiments 

have indicated that the explicit method is approximately five times 

faster per time step than the implicit scheme. In this case use of the 

implicit scheme is indicated when the Courant condition is to be vio- 

lated by a factor of 5 or more. 

With the less stringent convergence criterion the explicit method 

is only about three times as fast as the implicit method. Thus if this 

convergence criterion gives sufficient accuracy, and in practice it has, 

use of Implicit scheme is indicated when the Courant condition is to be 

violated by a factor of 3 or more. 

In practice the rate of convergence has been approximately quad- 

ratic, the maximum percentage change being roughly squared each time. 

Also in practice the Jacobian matrix has proved to be diagonally dominant« 
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This partially accounts for the accuracy of the inversion routine and 

the rapidity of convergence of Newton's method. 

The second problem involves one gas, half of which is initially at 

rest, the other half initially moving with constant velocity. The con- 

figuration at kO  cycles is two rarefaction waves moving in opposite 

directions at a sound speed which is C = 0.316. 

The gas initially at rest is divided into 90 cells of mass 0.1. 

The gas which is initially moving is divided into 10 cells of mass 1.0. 

Other initial conditions are: 

7 = 1.4    9 = 0.5 

(at = 0.5     X  = 0 

Finely celled gas     Coarsely celled gas 

p. = 1.0 

u. = 2.0 

Pj = 0.0714 

I = 0.1786 

Figure h  gives the plot of the density at time t = 20 from the 

numerical results and also the analytical values. It can be seen that 

no instabilities have appeared in the finely divided material even 

though the Courant condition is violated by a factor of approximately 

two. 

PJ" 
= 1.0 

u. = 
.1 

= 0.0 

V = 0.0714 

I. = 
0 

= 0.1786 
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One difficulty apparent from the graph is that the implicit scheme 

seems to lag behind the true solution in the finely divided region. 

Evidently the scheme does not alloy signals to he propagated at sound 

speed in such a finely divided material. This may be the fault of the 

form of the difference equations, since they are nonconservative. 
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Lax 
Cell Wendroff Explicit Exact Imp., Imp Imp_ 

1 0.702 O.698 O.698 0.702 

2 O.709 0.699 O.698 0.707 0.709 O.709 

3 0.725 0.703 0.698 0.720 0.719 0.721 

4 0.754 0.716 O.698 0.747 0.743 0.746 

5 O.80O 0.752 O.698 0.794 0.788 O.793 

6 0.866 0.826 0.822 O.865 O.857 0.864 

7 0.948 0.938 0.984 O.961 0.950 O.960 

8 I.0U5 1.075 1.130 1.075 1-063 1.074 

9 1.150 1.223 1.342 1.203 1.190 1.202 

10 1.259 1.372 1.453 1.335 1.322 1.334 

11 1.366 1.512 1.528 1.463 1.452 1.463 

12 1.463 1.616 1.528 1.568 1.611 1.568 

13 1.541 1.613 1.528 1.611 1.588 1.612 

14 I.589 I.588 1.528 I.586 I.563 1.587 

15 1.596 1.563 1.528 I.561 1.546 1.562 

16 I.566 1.548 1.528 1.545 I.537 1.546 

17 1.525 1.538 1.528 1.537 1.533 1.538 

18 1.508 1.533 1.528 1.533 1.531 1.534 

19 1.518 1.530 1.528 1.531 1.531 1.532 

20 I.534 1.528 1.528 1.529 1.530 I.530 
I.529 1.530 
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21 1.529 1.526 1.528 1.528 1.528 1-529 

22 1.526 1-525 1.528 1-527 1-527 1-527 

23 1.528 1.527 1.528 1.526 1.526 1.527 

24 1.528 1-532 1.528 1.526 1.526 1.526 

25 1.528 1.520 1.528 1.526 1.526 1.526 

26 1.528 1-526 1.528 1.525 1.526 1-526 

27 1.528 1-527 1.528 1-525 1-525 1-525 

28 1.528 1.528 1.528 1-525 1.525 1.526 

29 1.528 1-527 1.528 1.525 1.526 1.527 

30 1.528 1.525 1.528 1.526 1.526 1-527 

31 1.528 1.529 1.528 1.526 1.526 1.526 

32 1.527 1-532 1.528 1-526 1.526 1.526 

33 1.528 1.522 1.528 1.525 1-525 1.526 

34 1.527 1.530 1.528 1.526 1.525 1.526 

35 1.527 1.512 1.528 1-525 1.525 1.526 

36 1.528 1.531 1.528 1.528 1-527 1-529 

37 1.533 1.524 1.528 1.524 1.524 1-525 

38 1.526 1-529 1.528 1.528 1-529 1.528 

39 1.519 1.472 1-528 1.508 1.508 1.509 

4o 1-576 1.518 1.528 1.522 1-523 1-527 

41 1.546 1.298 1-528 1.432 1.432 1.423 

42 0.850 0.725 0 0.558 0.558 0.547 

43 0.108 0.136 0 0.114 0.114 0.111 

44 0.006 0.018 0 0.019 0.019 0.019 

45 0.000 0.002 0 0.003 0.003 0.003 
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Table 2     Density 

:ell 
Lax 

Wendroff Explicit Exact Imp1 Imp2 Imp, 

1 0.1)45 0.445 0.445 0.445 — — 

2 0.444 0.445 O.445 O.445 0.445 O.445 

3 0.442 0.445 O.445 0.444 0.444 0.444 

1+ 0.438 0.444 0.445 0.441 0.44l 0.441 

5 0.432 O.44o 0.445 0.436 0.437 0.436 

6 0.1*23 0.431 0.426 0.428 0.429 0.429 

7 0..1H3 0.,4l8 0.407 0.4l8 0.419 0.418 

8 0.401 0.402 0.388 0.404 0.4o6 0.405 

9 0.388 0.384 0.370 0.389 0.391 0.390 

10 O.376 0.367 0.350 0.374 0.375 0.374 

11 O.363 0.351 0.345 0.358 O.360 0.359 

12 0.352 0.338 O.345 0.345 0.347 0.346 

13 0.343 0.334 O.345 0.337 0.337 0.337 

14 O.338 0.338 O.345 0.336 0.336 0.336 

15 0.337 0.339 0.345 0.339 0.339 0.339 

16 0.341 0.341 O.345 0.342 0.341 0.342 

17 0.345 0.343 0.345 0.343 0.343 0.343 

18 0.347 0.344 0.345 0.344 0.344 0.344 

19 0.346 0.345 0.345 0.344 0.344 O.344 

20 0.344 0.345 0.345 0.344 O.345 
O.345 

0.344 
0.345 

21 0.344 0.345 0.345 0.344 0.345 0.345 
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22 0.345 0.345 0.345 0.345 0.345 0.345 

23 0.344 0.345 0.345 0.345 0.345 0.345 

24 0.344 0.345 0.345 0.345 0.345 0.345 

25 0.346 0.345 O.345 0.345 0.345 0.345 

26 1.212 1.170 1.304 1.213 1.218 1.170 

27 I.287 I.225 1.304 1.242 1.247 I.225 

28 1.295 1.259 1.304 1.264 I.269 1.259 

29 1.292 1.284 1.304 I.280 1.283 1.284 

30 1.294 1.289 1.304 1.290 1.292 I.289 

31 1.295 I.289 1.304 1.296 I.296 1.299 

32 1.297 1.286 1.304 1.301 1.301 1.304 

33 1.300 I.296 1.304 1.304 1.303 1.306 

3* 1.302 1.294 1.304 1.305 1.305 1.306 

35 1.304 1.304 1.304 I.306 I.306 1.308 

36 1.306 1.294 1.304 1.303 1.303 1.304 

37 1.307 1.292 1.304 1.305 1.305 1.306 

38 1.306 1.286 1.304 1.294 1.294 I.296 

39 1.299 1.307 1.304 1.306 1.306 I.309 

4o 1.335 1.248 1.304 1.261 1.261 1.266 

4l 1.326 1.194 1.304 1.313 1-313 1.312 

42 0.831 0.964 O.500 0.841 0.841 0.834 

43 O.540 0.628 O.500 O.568 O.568 O.566 

44 0.503 O.518 0.500 0.511 O.512 0.511 

45 0.500 O.502 0.500 O.502 0.502 0.502 
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3ell 
Lax 

Wendroff Explicit 

Table 3        Internal Energy 

Imp2 ^3 

1 19-78 19.76 19.76 — ___ 

2 19.77 19.76 19.75 19.76 19.76 

3 19.74 19.75 19.72 19.73 19.73 

4 19.67 19.73 19.68 19.69 19.68 

5 19.55 19.68 19-59 19.60 19.59 

6 19.40 19.5^ 19.45 19.47 19.45 

7 19.21 19.32 19.26 19.28 19.26 

8 I8.98 19.02 19.01 19.03 19.01 

9 18.74 I8.69 18.72 18.75 18.73 

10 18.49 18.34 18.42 18.45 18.43 

11 18.25 18.01 18.12 18.15 18.12 

12 18.02 17.73 17.85 17.87 17.85 

13 17.92 17.60 17.67 17.68 17.67 

14 17.73 17.65 17.66 17.65 17.65 

15 17.73 17.70 17.72 17.71 17.72 

16 17.79 17-75 17.77 17.77 17.77 

17 17.89 17.79 I7.8O 17.80 17.80 

18 17.92 17.81 17.82 17.82 17.81 

19 17.90 17.82 17.82 17.82 17.82 

20 17.86 17.82 17.83 17.83 
17.83 

17.83 
17.83 

21 17.86 17.82 17.83 17.83 17.83 

22 17.88 17.83 17.84 17.83 17.83 
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23 17.90 17.83 17.84 17.84 17.84 

2k 17.90 17.81 17.84 17-84 17.84 

25 17.78 17.80 17.86 17.86 17.85 

26 5.086 5.266 5.074 5.074 5.052 

27 4.789 5.026 4.95^ 4.955 4.938 

28 4.763 4.880 4.871 4.871 4.852 

29 4.770 4.803 4.813 4.813 4.797 

30 4.765 4.772 4.772 4.772 4.761 

31 4.757 4.747 4.747 4.747 4.738 

32 4.748 4.730 4.730 4.729 4.723 

33 4.739 4.732 4.722 4.721 4.716 

34 4.734 4.731 4.719 4.718 4.711 

35 4.729 4.733 4.720 4.720 4.713 

36 4.727 4.732 4.716 4.716 4.707 

37 4.729 4.717 4.722 4.722 4.715 

38 4.725 4.710 4.710 4.710 4.701 

39 4.717 4.715 4.727 4.728 4.723 

40 4.769 4.667 4.663 4.664 4.661 

41 4.698 4.472 4.738 4.738 4.728 

42 3.948 3.908 3.788 3.788 3.770 

43 2.973 3.087 3.030 3.030 3.025 

1*4 2.863 2.887 2.884 2.884 2.883 

45 2.857 2.861 2.861 2.861 2.861 
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Cell 

Table k Velocity 

9=0. 9=1 
X=0 X=0.5 

1 0.780 0.775 

2 0.793 0.788 

3 0.819 0.813 

k O.858 O.85I 

5 0.909 O.900 

6 0.972 O.961 

7 1-044 1.032 

8 1.125 1-106 

9 1.210 1.195 

10 1.298 1.282 

11 1.382 1.365 

12 1.456 l.44o 

13 I.5H 1-^98 

14 1.542 I.534 

15 1-551 1-5^7 

16 1.51*6 1.51*6 

17 1-5^1 1-5^3 

18 1.540 I.5I4O 

19 1-539 1.538 

20 1.539 1-536 

21 1.538 1.535 

22 1.538 1.534 

23 1.538 1.533 

24 I.538 1.533 

25 1-538 1.532 

26 I.538 1.532 

27 1-538 1-532 

28 1.538 1.532 
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Table h  (Cont.) 

29 1-538 1.532 

30 1.538 1.532 

31 1.538 1.532 

32 1.538 1.532 

33 1-538 1.532 

$k 1.538 1.532 

35 1.538 1.532 

36 1.538 1.531 

37 1.538 I.529 

38 I.538 I.521 

39 1-537 1.1*89 

ko 1.552 1.382 

in 1.177 1.079 

U2 0.262 O.58I 

43 O.029 0.213 

kk 0.003 0.064 

^5 0.000 0.018 

46 0.000 0.005 

47 0.000 0.001 

48 0.000 0.000 

k9 0.000 0.000 

50 0.000 0.000 
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Fig« 1. Velocity profile at time t = 13.kd  for problem 1. 
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Fig. 2.    Density profile at time t = 13.48 for problem 1. 

-*6- 



35 37 39      4t 

CELL NUMBERS 

43 45 

Fig. 3. Velocity profile of the shock front at t = 13.48 for various 
choices of X, 
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